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1. Introduction 

Recently, the problem of detecting a change in the mean of a sequence of random 

variables has attracted attention for study. Many authors have contributed various 

results to this problem. Generally, it is written by 

yj=dl+ej (i=l,...,r), 

_Vi=02+ej (i=r+l,...,n), 
(1.1) 

where {e;} is assumed to be independently identically distributed with mean 0 and 

constant variance 02, and T is called a change-point. In this model, Page (1955) 

considered a test of no change (0, = 0,) against a change (0, # 0,). Hinkley (1970) 

studied some behaviors of the maximum likelihood estimator for the change-point 
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T and also considered some related testing problem. Sen and Srivastava (1975) 

proposed a distribution free test and Worsley (1986) investigated confidence regions 

and tests for a change-point using maximum likelihood methods. Hawkins (1986) 

considered testing and estimation problems using least squares method. For a 

Bayesian approach Chernoff and Zacks (1964) considered some related estimation 

problem. 

However, in many practical situations, some important models can not be 

presented in the form of (1.1). Lombard (1987) considered a testing problem in a 

smooth change model which is an extension of model (1.1). In many situations, it 

is more realistic to assume that a change occurs following some intervention over 

a period of time rather than an abrupt change. For example, suppose a society in 

which a person’s income belongs to one of two different categories (for its simplicity) 

with respective distribution F,(y) and F,(y). When there is a force (intervention), 

say, some economic policy for instance, applying to the society, the income struc- 

ture starts to change after some period of time. Initially, the structure is in a stable 

state, and its income distribution is given bypIF,(y)+ (1 -pI)F2(y) where pI is the 

ratio of numbers that belong to the first category to the numbers that belong to the 

second category. After the length of time ri , the structure starts to change and its 

ratio of numbers that belong to respective categories also changes with time. Hence, 

the income is distributed according to p;F,(y) + (1 -p;)F,(y) at time i(i > ri). For 

its simplicity, we consider only that pI is monotone. The changes continue until at 

time r2, the structure finally comes to a stable state. Thus the income distribution 

is given byp,F,(y)+(l -p,)F2(y) wherep,=p,(i2r2). Let the mean of the income 

at the initial and the final stable states be denoted respectively by 8, and 0,. The 

change occurs when the state is stabilized after an intervening period. The 

phenomenon during the intervening period between rr and s2 is described in terms 

of mixture distributions instead of its means. Such a model also occurs in some type 

of evolution in a biological environment, chemical engineering (liquid that contains 

more than one component, for instance), economics and social science (marketing 

and Gallop survey, for examples). The number of different categories may, in fact, 

extend to any finite number. 

If the intervening period between ri and r2 is not our main concern, it is 

reasonable to consider that the time span r2 - s1 should be negligible comparing to 

the remaining time span when total time span is large enough. As we have pointed 

out in the previous example, the ‘real’ change occurs at time r2 though there are 

two change parameters of ri and r2, where r, indicates the time that the initial 

stable state breaks. Therefore, this model is completely different from the classical 

finite change points model. 

Now, we introduce a change-point model with intervening period which is ex- 

pressed as follows. 

~~Ix~=8,~,+8,(1-x,)+e, (i=l,...,n), (1.2) 

where {e;} is a sequence of independent error terms with mean 0 and finite 
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Var(ei)=a:Z(i~r,)+0,2Z(51<i<~~)+~22Z(r2~i~n), and the dummy 

variables xi taking values 0 or 1, which can be interpreted as an unobservable 

change-factor, are independent random variables with P(x; = 1) = Z(i< rl) + 

piZ(Tl <i< r2), where pi = (r2 - i)/(s* - r,) and Z(A) is the indicator function of the 

set A. The parameters T,, 72,8,, 02, of, 02’ and I$ are generally all unknown, and TV, 

r2 are usually called the change-point parameters. That is, the first part of the in- 

dependent observations y,, . . . , y,, are from the first population with mean 19~) the 

last part of the independent observations yn, . . . , y,, are from the second population 

with mean 0, and the middle part of the independent observations y,(r, <i< rz) are 

from a mixture of the first and the second population with mixing probability pi. 

Therefore, the model (1.1) can be easily seen as an extreme case of the model (1.2) 

when rz=rt+ 1. 

In this model, we consider a:, 022 and (~32 as our nuisance parameters. We are in- 

terested in estimating the parameters ri , TV, and 0,. 

Section 2 some 

Some least-squares type methods 

Under model (1.2), the error sum of is proportional to 

‘*$ [Y,-{pie,+(i-p,)e2}12 
i=l i=r,+l 

+ E (Yi-e2)2 > . (2.1) 
i = ~~ 

We are desirable to derive some explicit forms that are convenient for numerical 

computation. 

When ri and r2 are known, we can use some estimators ~(1,‘;,) and J(T~, n) to 

estimate 8, and B2, respectively, where ~(a,6) denotes the quantity Cf=, yi/ 

(b-a+ 1). Then, standard arguments show that these estimators are 

pi and r2 are unknown, let ?i and f2 denote respectively the values 

which minimize the sum of squares given by 

unbiased. If 

of r1 and r2 

En(T1~~2)=~ ( i {Yi-J(1,T1)}2 
i=l 

T2- 1 

+i=F+I [Y~-{PPI.F(~~~I)+(~ -Pi)P(T29n)I12 

+ i {Y;-J(~2,d)2 , 
i = ~2 > 

(2.2) 
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which is obtained from (2.1) by plugging in some pseudo estimators of 8, and t&. 

We propose estimators 6, and & as follows. 

6, =J(l, ?r) and & =J(f2, n), (2.3) 

where f, and 4 are defined by (2.2). 

3. Consistency and asymptotic distribution 

In order to show that some large sample properties of the proposed least-squares 

type estimators given by (2.2) and (2.3) are to be held, we need the following 

assumptions. 

Assumption 1. For convenience, suppose rlo, 520, Bro, 020 andp, be the true values 

of 51, r2, 19,) 0, and pi, respectively, and we assume 8ro # B20 and rro < r20. 

Assumption 2. When n -+ 03, we assume rIo --f 00, 520 + 00, r20 - ‘5io -+ 03 and satis- 

fying [~~]<r,~<r~~< [n(l -<)I for some c(O<r<+). 

Theorem 3.1. Under Assumptions 1 and 2, n-‘(i, - rlo) + 0 and n-‘(4 - 520) -+ 0 
with probability one as n + 03. 

Proof. For any E> 0, let 

~n,;(E):=~(~~,~2):n~'1r;-r~~I>~,[~~l~~,<~~~[~(l-~)l}, 

and /1,(c) = ut= 1 An,i(~). Then, under Assumptions 1 and 2, through a tedious but 

straightforward computation, it can be verified that, applying Kolmogorov’s 

theorem, if (T,, r2) en,,(&), then for n sufficiently large, 

E,(r,, r2) - En(rrO, 720) > 0 with probability one. 

By the definitions of B, and f2, we have 

P{(fr, f2)$/1,(c) for n sufficiently large} = 1. 0 

For its own mathematical interest, we can conclude the following results. 

Corollary 3.1. Under Assumptions 1 and 2, and in addition, if ~,o/n+~lO, ~~01 
n+~20asn+w,and~lo<~20, then f,/n --+ I,, and f2/n + A2o with probability one 

as n-+co. 

In the model we are interested in, the intervening period of (720 - rto) iS naturally 

supposed to be short comparing to other period in some sense. Therefore, we have 

the following which is of our main interest. 
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Corollary 3.2. Under Assumptions 1 and 2, and in addition, if slo/n + Lo, r20/ 

n -, A,, and n-‘(720 - 7& = Kh, where h, + 0, nh, + 03 as n --f co and K is a positive 

number, then Q,/n 4 &, and i,/n - A0 with probability one as n --, 03. 

The length of the intervening period is related to the rate of convergence of each 

change-point estimator which is shown in the following. 

Theorem 3.2. If assumptions of Corollary 3.2 hold, and in addition, h;(‘-e’(r,O/ 

n - ,I,) + 0, and hi” Pe)(r20/n - A,) + 0 as n + 03 for some 0 < Q < 1, then hi” -e)(?l / 

n-&)-+0 and hi (’ -e)(?2/n - A,) + 0 in probability as n + 03. 

Proof. Apply the analogous argument given in Yao and Au (1989). For any E>O, 

let 

and 

/I;;,Ja):={(r,, 72) : h;+’ &<n-‘~7i-rjO~<h~c,[n<]<71<72<[n(l-<)]}, 

A;;(E) := {(7,, 72) : hAme ~~n~1~7j-7jO~~~,[n~]<7,<72<[n(l-~)]}, 

A;k(E)=IUfEl ~n,iw~MJ~=, A:i,k(E)l, 

&Xc)= cut_, 4Ja)I’n {U?=r n;;(a)>, 

where uk+ I = i(20k + 1) and u0 = 0. It is clear that okI 1 as k + 03 and A,*(&) c 

u,“=, A;k(&). Th ere f ore, for any O<Q< 1, there exists a unique finite A4 such that 

u.4461 -e<UM+r and Pi,*(a) c IJF=‘=, A&(&). Let 

~~(7,,72)=~(1,r~)~(i~5,)+{Pi~(l,~~)+(l-Pi)~(~2S2,n)}I(r~<i<72) 

+P(r2, W(r2 GO, (3.1) 

where pi = (72 - i)/(72 - rl). Through a straightforward computation, under 

assumptions of Theorem 3.2, it can be shown that 

and if (rt,72) E/l~j,k (E) for any fixed j and k, then 

ict {EJ:( rt,r2) -E.i*(rte, 720)>~> Cnh,, 

where C is a positive real number. For example, for any fixed k, if (rt, r2) E /ln*, t, k(&) 

with r1 < 710 < r2 < rzo, then 

;g, WJ:( 71972) -@;*(7,0, 720)12 

TlO 

3i=F+, (1-Pi)2{E~(52,n)-e,0}2 
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(510 - 5, )(r,o - 71 + l)i2(r,o - Tl) + 11 = 

6(t2 - ~1 I2 
im52, n) - 4o12 

3 (nh;+1&)3 

3(nh:)2 
bw~2, n) - 4o12 

= Cnh,. 

From these properties and a tedious but straightforward computation, it can be 

shown that 

2 Ch, + o,(h, 1, 

where C is a positive real number. Therefore 

lim P 
[ 

min e,(~,,T2)-tn(~,0,t20)>0 = 1. 
n-co CT,3 rd E UL x,kW I 

Hence, by the definitions of f, and f2, we have 

Together with Corollary 3.2 and the fact that h;(‘-e)(,lo/n -A,) + 0 and h;(‘-@)(tzo/ 
n - Ao) + 0 as n + 00, the proof is complete. 0 

Theorem 3.3. If assumptions of Corollary 3.1 hold, and in addition, 
SUpi E( 1 ei lzi6) < 03 for some 6 > 0, then 6, + Blo and 02 -+ 020 with probability one 
as n-tw. 

Proof. It suffices to show that 6, + 8io with probability one as n + 03. Proofs are 

analogous for remaining parts and thus are omitted. 

For an arbitrarily given E> 0, let q be a fixed number such that q <AiO&/ 

2113~~- e,,l. Then, we have 

)-& >e),(n-'/fl-~~O/ <VII 
> 

-r,oI>rl) . 
I 

+P 
i 

fi (n-‘If, 
n=nl 

(3.2) 
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By Theorem 3.1, the second term on the right-hand side of (3.2) tends to zero as 

m + 00, and the first term is less than or equal to 

where A, = [rie - nq] and B, = [tic + na]. 

It is easy to see that the event 

sup 
&Sk<& 

implies that 

sup k-l ~ {yi-E(yi)} ME- SUP k-l f E(Y;)- 010 
An<k<& i=l rlo<k<& i=l 

> E - (B, - TIO) I ezo - elo I ho 

+&-~~e20-e101/~,0 as n--to~ 

>+E=E’, say. 

So, for rn sufficiently large, the right-hand side of (3.3) is less than 

(3.3) 

(3.4) 

Applying the Burkholder’s inequality (Burkholder, 1973) and the Jensen’s 

inequality, the right-hand side of (3.4) is less then or equal to 
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which tends to zero as m + 00, where C, C’ and C* are some constants. The proof 

is thus complete. q 

Theorem 3.4. If assumptions of Corollary 3.2 hold, and in addition, 
s~p,E()e~j~~~)<a~ for some 6>0, then 6, + 8,, and 02-+ 13~~ with probability one 
as n-tm. 

In the following of this section, we derive the asymptotic distributions of the 

proposed least-squares type estimators. 

Under assumptions of Corollary 3.2, and in addition, supi E(lei/2ts)<a for 

some 6>0, the usual multivariate central limit theorem shows that the random 

vector 

converges in distribution to a multivariate normal distribution with mean 0 and 

covariance matrix 

[ 

f$/Ao 0 
v= 1 0 &(l -A,) * (3.5) 

Applying the same technique in the proof of the Anscombe’s Theorem (see, e.g., 

Chow and Teicher, 1988) we can show that the random vector 

n l/2 
t ic, {Yi-E(Yi)I, ._i2+ I it72 {Y;-E(Y;))]’ 

converges in distribution to the same multivariate normal distribution with mean 0 

and covariance V defined by (3.5). In order to obtain the asymptotic distributions 

of 0, and &, we need the following lemma. 

Lemma 3.1. Under assumptions of Theorem 3.2, and in addition, nhi(‘-e) = O(1) 

for some Q > 0, the following convergence hold in probability as n -+ 00. 
(i) n-“2 C,‘lr {E(Y~)-~~~) +O; and 

(ii) n-l” c;=‘=, b5(Y;)-~20~+0~ 

Proof. We suffice to prove only part (i). For any E > 0, let q be a fixed number such 

that V< E/ 1 BzO - &, 1, we have 

P n-l” s {_qy,)- elo) 2.2 
[ I i=l I 1 
<p n-“2 ; {E(yi)-O1o} >E,nP’If, -T101 <n-“2rl 

L I i=l I 
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+ P(n_1 1 i, - 510 1 > K’2q) 

L 

9,a+n’i2?l 

GP n-‘/2 ,;, I{xY;)-R,H>c 
1 

+P(n_II?,-t,() >n?2v). (3.6) 

The first term on the right-hand side of (3.6) tends to zero as n + 00. By Theorem 

3.2 and nh~“~@)=O(l), we have n-1’2 (?, - rt,,) = o,(l), hence the second term on 

the right-hand side of (3.6) tends to zero as n tends to infinity. 0 

Using the Slutsky’s Theorem, we can conclude the following asymptotic 

normality of 0, and e2. 

Theorem 3.5. Under assumptions of Lemma 3.1, and in addition, 
sup;E(lei~2+6)<~ for some 6>0, as n+ 03, n”2(6,-6,0> and n”2(82-&J are 
asymptotically independent and normally distributed with common mean 0 and 
variance of/&, and oi/( 1 - &,), respectively. 

To obtain the asymptotic confidence regions for 8t0 and 020, we propose 

estimators for crf and 02 as follows. 

and 

Using analogous arguments, we can also obtain the following theorem. 

Theorem 3.6. Under assumptions of Corollary 3.2, and in addition, if sup; E( lei14+6) < 
03 for some 6 > 0, then 8: -+ at and & + 02 with probability one as n -+ 03. 

If we know a priori that a: = ai = CJ: = 02, then we construct a pool estimator fi2 

given by 

82=&f2)-~ rzi’ ~;(l-~i)(e,-e,)2, 
n i=i,+l 

where Qi and Qi(i= 1,2) are defined by (2.2) and (2.3), and pi= (f2-i)/(f2- ft). 

Theorem 3.7. Under assumptions of Corollary 3.2, and in addition, ifsup, E(lej14+‘)< 
03 for some 6> 0, then e2 + o2 with probability one as n -+ 03. 
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4. Monte Carlo results 

It is desirable to see how the proposed estimators perform in small samples. In 
this section we suppose that r$ = D;= ai = cr2. Associated with different intervening 
periods, Tables 1, 2 and 3 show, respectively, some mean absolute error and 
bias of the proposed estimators given in Section 2 based on simulated data for 
respective sample sizes n = 50, 100 and 200. In each case, y,, . . . , yInllol are generated 
from the normal N(&, I), y ,n1201, . . . , y, are generated from the normal N(820r 1) 
and y;([nA,,] + 1 <i< [nlzo] - 1) are generated from the mixture PioN(810,l) + 

Table 1 
Mean absolute error of four estimators Qz/n, 8,) 82, and 6’ computed from 1000 samples of size n from 

Normal distribution with a2 = 1, and 810 = 0, where A20 = lo and Alo = A20 - (log n)-‘. Corresponding bias 

are given in parentheses 

0.3 0.190( 0.083) 0.554( 0.136) 0.183(-0.002) 0.168(-0.057) 

0.4 0.135(-0.010) 0.374(-0.027) 0.160( 0.029) 0.172(-0.060) 

0.5 0.131(-0.044) 0.311(-0.058) 0.175( 0.001) 0.179(-0.074) 

0.6 0.124(-0.068) 0.265(-0.070) 0.174( 0.021) 0.191(-0.086) 

0.7 0.130(-0.090) 0.225(-0.055) 0.198( 0.000) 0.182(-0.085) 

0.3 0.071(-0.047) 0.777(-0.532) 0.139(-0.031) 0.404( 0.232) 

0.4 0.065(-0.042) 0.391( 0.156) 0.151(-0.028) 0.410( 0.134) 

0.5 0.068(-0.037) 0.287( 0.075) 0.178(-0.053) 0.409( 0.063) 

0.6 0.075(-0.054) 0.219( 0.034) 0.186(-0.052) 0.371( 0.037) 

0.7 O.OSO(-0.061) 0.196( 0.036) 0.225(-0.084) 0.361( 0.052) 

0.3 0.109(-0.033) 0.314( 0.015) O.llO( 0.018) 0.112(-0.022) 

0.4 0.104(-0.042) 0.227(-0.017) 0.107( 0.010) 0.128(-0.042) 

0.5 O.lOl(-0.044) O.lSl(-0.033) 0.116( 0.013) 0.131(-0.052) 

0.6 O.lOl(-0.055) 0.161(-0.030) 0.126( 0.009) 0.128(-0.039) 

0.7 0.102(-0.064) 0.140(-0.032) 0.146( 0.003) 0.130(-0.046) 

0.3 0.057(-0.046) 0.405( 0.197) 0.106(-0.019) 0.300( 0.163) 

0.4 0.056(-0.032) 0.247( 0.061) 0.113(-0.029) 0.31 l( 0.066) 

0.5 0.052(-0.027) 0.183( 0.040) 0.118(-0.028) 0.298( 0.047) 

0.6 0.057(-0.039) 0.150( 0.032) 0.140(-0.042) 0.281( 0.076) 

0.7 0.056(-0.041) 0.126( 0.026) 0.167(-0.061) 0.274( 0.079) 

0.3 

0.4 

0.5 

0.6 

0.7 

0.3 

0.4 

0.5 

0.6 

0.7 

0.082(-0.048) 0.189( 0.016) 0.070( 0.003) 0.088(-0.016) 

0.078(-0.037) 0.153(-0.001) 0.076( 0.006) O.OSS(-0.008) 

0.083(-0.030) 0.125(-0.013) O.OSS( 0.013) 0.093(-0.030) 

O.OSO(-0.045) 0.104(-0.013) 0.088(-0.001) 0.087(-0.020) 

0.084(-0.045) 0.092(-0.007) 0.104( 0.005) 0.087(-0.019) 

0.036(-0.024) 0.231( 0.074) 0.073(-0.013) 0.205( 0.057) 

0.035(-0.017) 0.164( 0.045) 0.077(-0.012) 0.199( 0.064) 

0.038(-0.017) 0.118( 0.024) 0.089(-0.013) 0.195( 0.042) 

0.039(-0.025) O.lOO( 0.022) 0.096(-0.028) 0.191( 0.067) 

0.040(-0.024) 0.089( 0.017) 0.113(-0.031) 0.188( 0.054) 
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(1 -P;~)N(&, 1) where pi0 = ([&,,I - i)/([nAzo] - [nAlo]). In each table, we take 

AZ0 = Ao. In Table 1, we take Ai0 = AZ0 - (log n))‘, in Table 2, we take A,, = A,, - np1’2 

and in Table 3, we take Alo = A,, - log n/n. Here we take t= 0.05 and compute the 

estimators defined in Section 2 using the generated data, and A0 is estimated by 

i,/n. In each table, we repeat 1000 times for each case of size n = 50, 100 and 200. 

For random number generation, we use the subroutines DRNNOA and RNBIN of 

the IMSL Package. It is seen that when n is 200 (large), the simulation results seem 

better when the intervening period is shorter, and this is explained in Theorem 3.2 

in some sense. 

Table 2 

Mean absolute error of four estimators f2,/n, 01, &, and 8’ computed from 1000 samples of size n from 

Normal distribution with a2 = 1, and oIO = 0, where A20 = A.0 and Alo = A20 - K”~. Corresponding bias 

are given in parentheses 

50 1 

4 

100 1 

4 

200 1 

4 

0.3 0.131( 0.050) 0.437(-0.003) 0.165(-0.004) 0.176(-0.077) 

0.4 O.lll( 0.019) 0.329(-0.050) 0.165( 0.024) 0.183(-0.090) 

0.5 0.096(-0.012) 0.269(-0.080) 0.172( 0.033) 0.184(-0.085) 

0.6 O.lOO(-0.029) 0.245(-0.079) 0.183( 0.013) 0.184(-0.091) 

0.7 0.103(-0.053) 0.230(-0.066) 0.221(-0.003) 0.182(-0.087) 

0.3 0.042(-0.026) 0.365( 0.099) 0.137(-0.015) 0.276(-0.050) 

0.4 0.042(-0.013) 0.261( 0.031) 0.154(-0.024) 0.299(-0.058) 

0.5 0.043(-0.011) 0.21 l( 0.018) 0.167(-0.011) 0.300(-0.070) 

0.6 0.044(-0.024) 0.181( 0.016) 0.180(-0.030) 0.287(-0.090) 

0.7 0.045(-0.028) 0.162( 0.006) 0.222(-0.051) 0.273(-0.078) 

0.3 0.072( 0.000) 0.239(-0.040) 0.098( 0.018) 0.124(-0.052) 

0.4 0.061( 0.002) 0.185(-0.043) 0.107( 0.016) 0.122(-0.047) 

0.5 0.066( 0.003) 0.162(-0.044) 0.122( 0.013) 0.132(-0.058) 

0.6 0.064-0.009) 0.138(-0.033) 0.139( 0.021) 0.129(-0.059) 

0.7 0.060(-0.020) 0.120(-0.027) 0.147( 0.015) 0.120(-0.047) 

0.3 0.029(-0.019) 0.21 l( 0.029) 0.094(-0.007) 0.182(-0.031) 

0.4 0.027(-0.038) 0.157( 0.018) 0.103(-0.008) 0.179(-0.024) 

0.5 0.026(-0.007) 0.133( 0.012) 0.117(-0.015) 0.183(-0.034) 

0.6 0.027(-0.017) 0.112( 0.011) 0.129(-0.012) 0.173(-0.034) 

0.7 0.030(-0.019) 0.102( 0.009) 0.147(-0.023) 0.172(-0.014) 

0.3 0.043(-0.003) 0.144(-0.022) 0.069( 0.009) 0.086(-0.026) 

0.4 0.048( 0.003) 0.119(-0.026) 0.077( 0.011) 0.090(-0.035) 

0.5 0.044( 0.000) O.lOO(-0.014) 0.085( 0.008) 0.087(-0.024) 

0.6 0.042(-0.005) 0.083(-0.008) 0.098( 0.014) 0.088(-0.028) 

0.7 0.040(-0.009) 0.073(-0.007) 0.104( 0.006) 0.089(-0.030) 

0.3 0.019(-0.011) 0.133( 0.020) 0.069(-0.005) 0.117( 0.000) 

0.4 0.019(-0.008) 0.105( 0.015) 0.075(-0.009) 0.119(-0.003) 

0.5 0.019(-0.008) 0.094( 0.014) 0.083(-0.012) 0.120( 0.008) 
0.6 0.019(-0.012) 0.079( 0.013) 0.096(-0.006) 0.116(-0.002) 

0.7 0.020(-0.012) 0.071( 0.009) 0.107(-0.021) 0.121(-0.004) 
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Table 3 

Mean absolute error of four estimators h/n, 6 ], &, and e2 computed from 1000 samples of size n from 

Normal distribution with rs2 = 1, and 6’10 = 0, where A20 = & and Alo = A20 - log n/n. Corresponding bias 

are given in parentheses 

50 1 

4 

100 1 

4 

200 1 

4 

0.3 0.104( 0.058) 0.388(-0.082) 0.151( 0.023) 0.187(-0.091) 

0.4 0.093( 0.045) 0.279(-0.063) 0.161( 0.029) 0.187(-0.094) 

0.5 0.091( 0.033) 0.260(-0.064) 0.178( 0.034) 0.181(-0.098) 

0.6 0.072( 0.005) 0.208(-0.069) 0.182( 0.026) 0.179(-0.092) 

0.7 0.089(-0.024) 0.215(-0.085) 0.224(-0.003) 0.179(-0.095) 

0.3 0.020( 0.000) 0.254(-0.016) 0.130( 0.005) 0.255(-0.171) 

0.4 0.025( 0.013) 0.21 I(-0.005) 0.148(-0.003) 0.256(-O. 150) 

0.5 0.025( 0.012) 0.182( 0.005) 0.160( 0.005) 0.249(-0.146) 

0.6 0.020( 0.000) 0.159(-0.010) 0.169( 0.001) 0.240(-O. 158) 

0.7 0.020( 0.000) 0.143(-0.002) 0.208(-0.023) 0.234(-0.156) 

0.3 0.051( 0.020) 0.223(-0.049) 0.103( 0.018) 0.124(-0.054) 

0.4 0.056( 0.028) 0.169(-0.049) O.lll( 0.029) 0.122(-0.053) 

0.5 0.056( 0.022) 0.151(-0.043) 0.120( 0.022) 0.129(-0.060) 

0.6 0.051( 0.017) 0.131(-0.027) 0.134( 0.029) 0.127(-0.061) 

0.7 0.048( 0.004) 0.119(-0.031) 0.148( 0.005) 0.125(-0.050) 

0.3 0.012(-0.003) 0.172(-0.005) 0.097( 0.001) O.lSO(-0.084) 

0.4 0.015( 0.005) 0.136(-0.005) O.lOl( 0.008) 0.150(-0.074) 

0.5 0.014( 0.005) 0.122(-0.001) 0.113( 0.000) 0.154(-0.079) 

0.6 0.013(-0.002) 0.109( 0.000) 0.121( 0.003) O.lSl(-0.088) 

0.7 0.013(-0.003) 0.098( 0.002) 0.136(-0.016) 0.145(-0.074) 

0.3 0.033( 0.015) 0.141(-0.033) 0.069( 0.010) 0.085(-0.034) 

0.4 0.031( 0.015) 0.1 lO(-0.023) 0.075( 0.009) 0.090(-0.034) 

0.5 0.031( 0.015) 0.096(-0.020) 0.079( 0.013) 0.087(-0.025) 

0.6 0.032( 0.012) 0.084(-0.011) 0.096( 0.018) 0.089(-0.031) 

0.7 0.029( 0.009) 0.074(-0.011) 0.107( 0.014) 0.087(-0.034) 

0.3 O.OOS(-0.003) 0.115( 0.005) 0.066( 0.000) 0.092(-0.041) 

0.4 0.008( 0.001) 0.094( 0.005) 0.072(-0.001) 0.099(-0.038) 

0.5 0.008( 0.001) 0.085( 0.001) 0.075( 0.001) 0.094(-0.028) 

0.6 0.008(-0.003) 0.077( 0.003) 0.090( 0.002) 0.097(-0.039) 

0.7 O.OOS(~O.002) 0.069( 0.001) O.lOl(-0.004) 0.098(-0.044) 
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